TOWARDS A MATHEMATICAL MODEL FOR SEMANTICS.
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In this paper an attempt will be made to offer a non-technical exposition of the
principles underlying the author’s recent work in constructing a mathematical model for
language in which full use of semantic concepts is made. In order to simplify the pres-
entation attention will be restricted primarily to the level of the simple sentence and
the word will be assumed to be the minimal, free, meaningful unit.

As a formal model of a real phenomenon, the present structure does not pretend to
to offer a complete or perfect description of the situation that it seeks to model, but
rather examines those aspects accessible to analysis in the way that mathematical
physics analyses certain aspects of the physical universe. If such a model is to be
worthwhile it must have powers of definition and explanation of observed phenomena
and should allow deductions of new facts to be made. Lacking detail, it should seek
power in generality, that is,in achieving the widest possible range of validity.

This present work should be considered as representing an early stage of develop-
ment and hence as being liable to much future modification. The apptoach used is not
unlike that of Abraham and Kiefer (1966) but the mathematical structure is deeper and, in
the author’s opinion, is more flexible and capable of development.

We shall consider a language from the following point of view. Every language
will have a vocabulary (V) each of whose members, called words, may be either gramma-
tical markers (M) or a designatum for an external concept. This latter set of words we
shall call the lexicon (L). In general,some words may play both roles simultaneously.

By means of the operation of concatenation, strings of words may be formed and a
proper subset (&) of the set of all possible strings will be called the set of sentences or
marked strings of the language. In writing a grammar for a given language we wish to
specify precisely which strings belong to & and to give to these strings a structural
description (Chomsky 1965a, 1965b).

A primary feature of the present model is an attempt to reduce these structural
descriptions to a small number of basic types each of which fulfills a particular semantic
function. This is similar to Chomsky’s structure of ‘‘kernel sentences’’ from which other
sentences may be derived by means of transformations. In our case, transformations will
be used with a semantic role; it will be convenient, for example, to consider negation as
a transformation whether or not the grammatical complexity of the negative sentence
would be considered, by the Transformationalists, to merit the use of a transformation
rule.

To summarize the model at this stage we note the following features: (1) A grammar
(over V) generating structural descriptions which are partitioned into certain basic sen-
tence types.
(2) A set of concepts (K) corresponding to the designata.
(3) A correspondence between the lexicon and the set of concepts.



(4) A construction on the set of concepts corresponding to each of the various sentence

types (S).
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Clearly, little progress can be obtained from this wide viewpoint without a con-
sideration of the form of the structure of ®, K and S. We shall firstly consider the space
of concepts K.

In psychological terms, concepts are developed throughout life, and especially in
the early part of life, by processes of linkage and generalization on a few basic con-
cepts or ideas. Such processes are accomplished mainly, but not exclusively, by ling-
uistic means and they can normally be expressed linguistically or in a quasi-linguistic
or iconic form as in the arts. By linkage we mean, roughly, the process of forming the
union or join of concepts, and by generalization, the process of taking the concepts
common to several situations.

With this situation in mind, we posit K as a set consisting of a finite set of basic
points (basic concepts) together with all the finite subsets generated by these points and
then all the finite subsets generatable from these points et seq. The resulting infinite
set of objects we take as the points of the space K and we must next consider structures
over this set of points.

One structure on K becomes immediately obvious, viz., the partial ordering of the
points under the relation of set inclusion (see appendix). This structure js intended to
model logical and phenomenological structures on concepts such as in the chain, ‘‘every
Male is Human is Mammal is Animal is......"”" where the word ‘‘js’’ Plays the role of the
inclusion operator. Such a relation defines a directed graph (see appendix) over K and
this in turn describes a topology (structure) on K in which concepts are linked together
by their common properties. Further structures will be imposed on K later.,

We shall approach the problem of the structure on ¢ by considering the well-known
problem which faces a linguist when investigating an unknown language. His data is a
corpus of material in the form, effectively, of linear strings of symbols which, upon exam-
ination, prove to be structured. Using techniques such as those expounded by Harris
(1947) he will compare strings (utterances) noting where one symbol may be replaced by
another without producing a non-marked string.

It is easy to see that mutual substitutability of words in marked strings defines an
equivalence relation (see appendix) which divides the vocabulary into mutually disjoint
word classes. In analytical languages such as English or Chinese these classes will
correspond closely to the traditional concept of ‘“parts of speech’’ but in inflected lang-
uages a more complex relation, which takes account of paradigms, must be defined in




order to accomplish the same result. Again, in agglutinative languages such an analysis
may partition morphemes rather than words but, with appropriate modifications, such a
P.al‘titioning can be achieved and the resulting classes often have characterising seman-
tic properties. If such a set of word classes can be obtained, we can derive a form of

structural. description of our marked strings, viz., sequences of classes corresponding
consecutively to each word of the original string. It is amongst these sequences that we

must search for our basic sentence types. Analysis of such structures, called B-struct-
ures, has been extensively considered by Revzin (1962) and others, and a mathem atical
analysis has been published by Marcus (1967).

We may note, at this point, that the mathematical techniques by which these B-
structures are established and the techniques by which these B-structures may be analysed
into basic types are formally identical, a feature which is of help in the development of
the mathematical structure of the model.

Although this is a practical technique which may be used to analyze real languages
without the use of semantic notions, no algorithm has ever been offered for formalising
the process. Now formal, or mathematical languages fall within the scope of our general
definition of language and it is well known that many of these have an undecidable word
problem; that is, there is no effective process available or constructable which will
determine, for any arbitrary string of words, whether or not that string is a marked string.
Thus we have no a priori certainty that a purely syntactic analysis of a language (in
this sense) will yield such a partition into word classes. That all known, colloquial
languages can be so partitioned is symptomatic of the rather obvious fact that language
has non-syntactic properties. It is also surely true that no field worker can but take
account of the semantic nature of the language he is studying if he is to make any analy-
tical progress.

Assuming that an analysis of the marked strings into B-structures has been achiev-
ed, at least in part, the resulting system may then be further analysed by type-theory
techniques such as those introduced by Bar Hillel (1953), Lambeck (1961), and others.
In this technique, the marked string may be given a type ‘s’ and the class of nouns (say)
a type ‘n’. Other word classes may then be assigned types according to the contexts
in which they occur. This results in an algebraic algorithm which determines which
B-structures yield marked strings - provided the analysis is effectively possible. Where
such an analysis has succeeded it leads in a natural way to a definition of a Phrase
Structure generative grammar in the sense of Chomsky. Even as the process of syn-
tactic analysis is more likely to achieve success if it is restricted to certain classes
of relatively simple sentences, so a convenient grammar may be written, following
Chomsky, by using Phrase Structure generators for a limited set of kernel sentences
(together with the help of morphophonetic transforms), and then generating the remaining
sen tences by transforms both of a semantic and of a purely syntactic form.

Let us now consider the relationship between the two systems that we have so
far considered, viz., the semantic and the syntactic.

To each item of the lexicon there corresponds a set of ‘readings’ in the form of a
set of concepts, that is points of K. These readings are defined by a ‘dictionary’ and
each separate dictionary reading is considered as a separate point of K. If true synonyms
exist, then we shall also have the situation that to some points of K there correspond
several lexical items.



Since our vocabulary is assumed to be partitioned, this correspondence will induce
a partitioning on K. Presumably, in a very orderly language where each word class has
a distinct semantic rdle, this partitioning would coincide with certain of the structures
already existing on K; for example, where nouns always refer to the logical category of

objects and verbs to that of actions, say. In practice this ideal situation will rarely
obtain.

It is very significant that any language for which a syntactic analysis is possible
will have a semantic model of the type so far outlined, provided of course that a diction-
ary exists. Conversely, the detailed mathematical structure envisaged for this model
would guarantee the existence of a successful syntactic analysis. In other words a
langnage will have a decidable word problem if and only if it has a semantic model.
Apart from the significance of this result to mathematics it would also justify the use

of an appeal to semantic notions, in principle at least, even to the most strict of formal
structuralists.

By analogy with syntactic analysis we may reduce the number of basic partitionings
in K. Consider, for example, the case of a transitive verb. In essence, a given verb is
completely determined by two sets of words (or groups of words with a specified struct-
ure) viz., the set of its possible subjects and the set of its possible objects. Thus if,
say, we denote the set of nominal forms by N, then a given verb is identical with a
specified subset of the Cartesian product (see appendix) NxN.
necessary to include an additional semantic marker to distinguish closely related verbal
concepts of this type. In the same way, an intransitive verb would consist of a subset
of N together with a specifier and it may well be that modifying classe
treated.

In practise it may be

S can be similarly

Traditionally, such a class of nominal forms was defined b

y indicating a property
or properties that all the members of that class must satisfy. In the pEessnt mogelpsuch

classes are automatically defined, in a natural way, within the aforementioned topology
on K and moreover such a reduction, wherever possible, gives an automatic indication
as to which strings of words make semantic, or at least logical sense.

A further structure on K now appears. In addition to logical and phenomenological
relations between concepts, there are also relations which are established by expetience
and by sociological conditioning, relationships which vary from one individual to spother
and from one culture to another. Such relationships can be liﬂguistiCally established by
adequate repetition of pairs of words, or of chains of pairs of words in context; a process
reminiscent of that by which the brain itself becomes conditioned. Such a rela.tion roess
reflexive, defines an undirected graph over K (see appendix), a Structure which co’uld be
the object of a psychological study such as that by Osgood et al. (1957). Concept struc-
ture is therefore defined as being dependent on two relational structures and may, In
any individual or society, contain inconsistencies. It should be noted that if we are
able to make reductions of the type described above in respect of the transitive verb etc.,
the appropriate relations of this latter type are automatically induced on the given verbal
concept.

We now come to a consideration of the structure that must model the semantic status
of our complete sentence. Any sentence will consist of a string, some of whose symbols
(such as order or inflexion or particles) serve simply to mark grammatical function.



5

tence
Other symbols, belonging to the lexicon, correspond to concepts and hso 1“::0:”:;05“3
structure (B-structure) when provided with a set of arguments from t : ex ’
a certain linkage (semantic function) between the corresponding concepts.

To model these linkages we construct the space S in the following man;u:;.z Let
Wy, Wy, eee0,Wp, be the word classes of the given language. To each class Wi , (is1, ,f.i...;
k)l.wez'have' aks'signed a directed graph L; (the partial ordering d:sc:lbe:l asd:l;idbresd

e on K) and also an undirected graph C; (the second graph struc ure

:::ml{c)t.m We defizxe next the Cartesian product of graphs (see appendix)dagd :,tal: :::ns;l:::
that our final structure will be based. Since both the graphs Liand C; Vd o
vertices, we can consider them as a single graph G; say. We now take. a moBuct e
graphs G; corresponding to each B-structure (sentence structure); ?.g., if the B-stru ¢
‘W3WegW4We' occurs, then we must take a product ‘G3xGgxGyxGg'. Inka det:iil:dt;:::e
struction we would, in fact, begin this process at phrase level and wor upwards, 1
being no technical reason why the process cannot be continued up to di§course level.
Further, where we have made use of semantic transforms in the syntactxf: part. of o;.r
analysis, we correspond to each such transform T a concept C. Then if a given >
structure corresponds to a graph G the transform under T of that sentence structure wxd
correspond to the graph {CT}x(_i. Thus all sentences, half sentences, .clauses an
phrases, etc., will correspond to points in S and it is claimed that the very nc.h .structu.re
of this space already models many semantic properties of language not e?tp11c1tly b.u1lt
into it. The justification of such a claim is necessarily mathem atic?l but, m conclusm.n,
this paper will attempt to give a brief description of the manner in which various semantic
phenomena appear in this model.

Perhaps, in passing, it is worth noting that any conceptual situation which is
capable of linguistic expression will be representable within this model.,

(1) Ambiguity and its resolution. Where a word, occurring in a sentence, has sev-
eral dictionary readings, that sentence will generate correspondingly many points in the
space S. In the case of a semantically inadmissible reading, the relevant L-graphs of
subsentence structure will not be connected (see appendix). Note that this implies that
the problem of gramm atically correct but anomalous sentences can be dealt with at the
semantic level. In the case of admissible readings, the graphs will be connected but,
in general, the paths leading to the different readings will be of differing lengths, the
shortest path length giving the most probable reading. In the case of discourse analysis
the most probably correct reading will be that which has the shortest C-graph path to the
points corresponding to other sentences in the discourse. In the case of allusive and
literary language, points may be disconnected on the C-graph but there is some evidence
to suggest that an interpretation can be made by searching for paths of minimal length
on the L-graph considered as being undirected.

(2) Semantic information. A similar consideration will give us a measure of seman-
tic information (Bar Hillel 1952). A well known fa;:t, the iteration of which will give
little information, will correspond to a conceptual linkage (a short path on the C-

structure), whereas a surprising fact will generate a longer path. Thus path length can
Seérve as a direct measure of semantic information.

(3) Translation. A successful translat

ion between languages is one where ‘mean-
ing’ is preserved as faithfully as possible.

It follows that if we can construct a semap-
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Two sets are said to be mutually disjoint if their intersection is the empty set.

4-B is the set consisting of all those objects in A which are not in B. If every member
of a set A is also a member of the set B we write ACB. We say that A is a subset of B.

For two sets A and B, A = B if and only if ACB and BCA.

The Cartesian product AxB of A with B is the set of all pairs (a,b) of objects, where a
belongs to A and b belongs to B; e.g. if A = {1,2} and B s {a,b}, then AxB = {(1,a),

(1,b), (2,a), (2,b)}.

A relation on a set A is a subset of AxA. If R is such a relation, R C AxA, and if (a,b)
belongs to R we may write aRb. Note that this does not imply bRa. Such a relation is
symmetric if, for all a in A, aRa holds; it is reflexive if bRa holds whenever aRb holds;
it is transitive if, whenever both aRb and bRc hold, then aRc must hold, for a,b,c belong-
ing to A. If all these three properties hold, then the relation is called an equivalence
relation and it then has the important property of partitioning the set A into mutually
disjoint sets called equivalence classes.

A graph G= {V,E}, consists of a set of points V called vertices and a set E of edges,
where E C VxV. It may be represented by means of a diagram showing V as points and
representing E by lines joining the appropriate pairs of vertices. Note that E is a re-
lation on V and hence relational systems can be considered as graphs.

e.g. Let G = {{1,2,3,4}, {(1,2), (2,3), (2,4), (1,4), 3,4)}}. This may be represented
in the following diagram.

If the relation E is not reflexive we say that the 1 > 2
graph is directed and represent the edges by arrows
as in the present diagram. If E is reflexive we
say that the graph is undirected and can repre- b
sent the edges simply by lines. A path on a

3 o 4

graph is a sequence of adjoining edges, taken
only in the correct direction in the case of a directed graph; e.g., in the above diagram

there is a path from 1 to 2 to 3 to 4, but there are no paths from 4 to any other point.

A graph is connected if there is a path joining any two vertices.

The Cartesian product of two graphs is constructed as follows: if the two graphs are
Gy = {VI'EI} and Gy = {V2,E2} and G1xG, = G, then the vertices of G consist of the
set Vj xVy; if (a,b) and (c,d) are two vertices of GyxG, then ((a,b), (c,d)) is an edge if
and only if either a = ¢ and (b,d) is an edge of Gy, or b =d and (a,c) is an edge of Gj.
What this construction does, in effect, is to provide a copy of G, at each vertex of G

and a copy of Gp at each vertex of Gy.
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